Functional carbon nanohybrid for improved vectorization of anticancer therapeutics


Giuseppe Cirillo

Department of Pharmacy, Health and Nutritional Sciences – University of Calabria – 87036 – Rende (CS) – Italy. Tel/Fax 0039 0984493011

Carbon nanostructures, consisting of hexagonal sp2-bonded carbon atoms lattices possessed superior electrical, chemical, physical, mechanical, and biological properties  making them some of the most attracting materials for the fabrication of highly engineered drug delivery carriers, mainly in the form of nanohybrids 1, 2. Such materials, resulting from the combination of carbon nanostructures (mainly Carbon Nanotubes – CNT, and Nanographene Oxide – NGO) with different types of polymers from both synthetic and natural origin, are receiving increasing attention for application in biomedicine 3. In addition, we recently proved that the functionalization of the polymer counterpart with biologically active molecules (e.g. polyphenol compounds) is a valuable strategy to obtain of a functional drug delivery system, in which the biological effect are related to both the loaded drug and the carrier itself 4-6. A further improvement can be achieved by the insertion of magnetic nanoparticles, with the obtainment of delivery vehicles able to localize the delivery of payload at the proper site 7.

Here, the most recent insights and promising strategies to design magnetic carbon nanohybrid-based therapeutics for biomedical applications are presented by a multidisciplinary approach, which combines expertise in biology, chemistry, radiobiology and oncology.

1.             Mohajeri, M.;  Behnam, B.; Sahebkar, A., Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J Cell Physiol 2018.

2.             Biagiotti, G.;  Fedeli, S.;  Tuci, G.;  Luconi, L.;  Giambastiani, G.;  Brandi, A.;  Pisaneschi, F.;  Cicchi, S.; Paoli, P., Combined therapies with nanostructured carbon materials: There is room still available at the bottom. Journal of Materials Chemistry B 2018, 6 (14), 2022-2035.

3.             Vedhanarayanan, B.;  Praveen, V. K.;  Das, G.; Ajayaghosh, A., Hybrid materials of 1D and 2D carbon allotropes and synthetic π-systems. NPG Asia Materials 2018, 10 (4), 107-126.

4.             Vittorio, O.;  Brandl, M.;  Cirillo, G.;  Kimpton, K.;  Hinde, E.;  Gaus, K.;  Yee, E.;  Kumar, N.;  Duong, H.;  Fleming, C.;  Haber, M.;  Norris, M.;  Boyer, C.; Kavallaris, M., Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth. Oncotarget 2016, 7 (30), 47479-47493.

5.             Vittorio, O.;  Brandl, M.;  Cirillo, G.;  Spizzirri, U. G.;  Picci, N.;  Kavallaris, M.;  Iemma, F.; Hampel, S., Novel functional cisplatin carrier based on carbon nanotubes-quercetin nanohybrid induces synergistic anticancer activity against neuroblastoma in vitro. RSC Advances 2014, 4 (59), 31378-31384.

6.             Kunz-Schughart, L. A.;  Dubrovska, A.;  Peitzsch, C.;  Ewe, A.;  Aigner, A.;  Schellenburg, S.;  Muders, M. H.;  Hampel, S.;  Cirillo, G.;  Iemma, F.;  Tietze, R.;  Alexiou, C.;  Stephan, H.;  Zarschler, K.;  Vittorio, O.;  Kavallaris, M.;  Parak, W. J.;  Mädler, L.; Pokhrel, S., Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2017, 120, 155-184. 7.             Lerra, L.;  Farfalla, A.;  Sanz, B.;  Cirillo, G.;  Vittorio, O.;  Voli, F.;  Grand, M. L.;  Curcio, M.;  Nicoletta, F. P.;  Dubrovska, A.;  Hampel, S.;  Iemma, F.; Goya, G. F., Graphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells. Pharmaceutics 2019,11 (1).